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Summary

Quantum Code is a low-level language for describing quantum circuit. It is very similar to the basic 
QASM language, but it introduces more features which are mainly related to the execution and the 
simulation of quantum circuits. This document describes the syntax and the semantic of the 
Quantum Code. Several circuits are given as examples to help the quantum programmer 
understand it.

1. Notations
• Code examples are shown within a box.
• Quantum Code pre-defined keywords are noted in mallow color, for example: “qubits”, 

“measure”, “cnot”…

2. Syntax

2.1. Case sensitivity and Comments
The QC language is not case-sensitive, i.e. upper case letters are equivalent to lower case one.

To make the code more readable, the quantum programmer can add comments in his code. 
Comments starts with “#” and can be added either in a separate line or at the end of a line 
containing code as in the following example:

�1

x q0   # pauli x on qubit 0

# parity check
measure q1   # measure the first ancilla
measure q2   # measure the second ancilla

mailto:n.khammassi@tudelft.nl
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2.2. Qubits Definition

A. Specifying Qubit Number

Qubits number should be defined before in the beginning of the QC file before any gate definition.
Example: Defining a quantum register with 17 qubits. We not that all qubits are initialized to zero at 
the time of creation of the register.

 
B. Default Qubit Identifier

Once the number of qubits defined, the qubits can be addressed individually through its default 
identifier “qn” where “n” is the identifier of the target qubit (in our example, n is in [0..16], so qubits 
identifier are “q0”, “q1”,… or ”q16”). 

For example, applying a pauli-x gate to the qubit 5 can be specified through the following line:

C. Naming Qubits

In order to give a meaningful name to each qubit and make the quantum program more readable, it 
is possible to name qubits using the keyword “map”. For example, if we want to use the qubit 1 as 
an axilla and we want to name it “a0” instead of “q1”. we can do it as follow: 

The previous line means that “a0” is mapped to qubit “q1”. After that line, “q1” is equivalent to “a0”. 
For example the 2 following lines are equivalents:

�2

qubits number

qubits 17

x q5

map q1,a0

x q1

x a0
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D. Binary Register

By default, a binary register is associated to the quantum register. It is mainly used to store the 
result of measurements (or to predict the value of non-entangled qubits (experimental)). Typically 
after measuring a qubit “q0”, the result of the measurement is stored into a bit “b0”. The later (“b0”) 
can be used to apply binary-controlled gates to some qubits. 

The following example shows how we measure a qubit “q0” then use the measured bit (stored in 
b0) to control a pauli-x gate which we apply to a second qubit “q1”:

E. Naming Bits

Similarly to the qubits, the measurement bits can be renamed too to make the code more readable:

After this line, “mybit” can be used instead of “b0”.

In the next example, we use  the qubit “q0” as an ancilla qubit, we name it “ancilla”. When “q0” is 
measured, the result of measurement is stored by default in “b0”, so we can rename it 
“ancilla_measurement” to make the code more readable.

2.3. Quantum Gates
The Quantum Code syntax support a quantum gate set which includes single and multiple (2,3) 
qubit(s) gates. It provide support to common controlled gates such as CNOT and Toffoli gates. In 
addition QC  allows the circuit writer to use binary-controlled gates which use the outcome of qubit 
measurements to control several quantum gates.

The available gates are listed in the following table:

�3

measure q0
cx b0,q1

map b0,mybit

map q0,ancilla
map b0,ancilla_measurent
…
measure ancilla
cx ancilla_measurement, q1
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Note : as stated before, Quantum Code is not case-sensitive, for instance, “CNOT” and “cnot" are the same.

Quantum Gate Keyword Example Notes
Hadamard H h q0

Pauli-X X x q3

Pauli-Y Y y q0

Pauli-Z Z z q5

Rx RX rx q0, 1.553 • The angle is given in radian.

Ry RY ry q3, 0.327 • The angle is given in radian.

Rz RZ rz q9, 132 • The angle is given in radian.

Phase Ph / S ph q0
s   q0

• Apply a phase gate (S).
• Ph and S are equivalent.

T gate T t q0 • Apply a T gate.

T dagger (conj-transpose) Tdag tdag q0 • Apply a T dagger gate.

CNOT “CNOT” or “CX” cnot q1, q3
cx q3, q1

• Control qubit is the first 
argument, the target qubit is 
the second.

• “cx” and “cnot” are 
equivalent, the only 
difference is that “cx” can be 
used to perform a binary 
controlled gate if a bit is 
given as a first argument 
(control bit).

Toffoli Toffoli toffoli q0,q1,q3 • Control qubits are “q0” and 
“q1”.

Swap SWAP swap q1, q2

CPHASE / CZ CPHASE / CZ cphase q0,q2
cz         q0,q2

• ‘cphase’ and ‘cz’ are 
equivalent.

• ‘cz’ can be used also as 
binary controlled pauli-z gate.

CR cr q0,q1 • This gate is designed 
specifically to ease the 
specification of the Rk gates 
used in the QFT.

Binary-Controlled Pauli-Z CZ cz b1,q1 • b1 is the control bit.

Binary-Controlled Pauli-X CX cx b0,q0 • b0 is the control bit.

Prepare in | 0 > state PREPZ prepz q0 • Initialize the target qubit in a 
ground state.

Controlled Phase Shift with 
an angle 

�  
where k = control_qubit - 

target_qubit

�4



DRAFT 0.2

2.4. Measurements
A. Partial Measurement (Single Qubit)

Qubits can be measured individually using the keyword “measure” followed by the target qubit as 
in the following example:

A. Register Measurement (All Qubits)

The entire quantum register can be measured at once using same keyword without specifying any 
target qubit as in the following example:

2.5. Binary-Controlled Quantum Gates
Binary-controlled gates are quantum gates which are controlled by measurement outcomes. The 
programmer can use a binary measurement outcome to control a quantum operation. The later will 
be executed only if that binary value is 1. In the following example we put the first qubit “q0” into 
superposition then we measure it and we use its measurement outcome “b0” to apply conditionally 
a pauli-x gate on qubit “q1”.

Multiple measurement outcomes can be used to control a quantum operations, in this case all the 
control bits are put before the qubits. 

Sometimes, the programmer might need to use an arbitrary binary mask where some 
measurement outcomes are ones and others are zeros. In this case the programmer can use the 
“not” classical operation to invert a bit before using it to control an operation.

�5

measure q0

measure

h q0
measure q0    # measurement outcome in b0
c-x b0,q1        # apply pauli-x to q1 if b0=1

measure q0
measure q1
measure q2
c-x b0,b1,b2,q4   # apply pauli-x to q4 if b0=1 and b1=1 and b2=1

measure q0
measure q1
# we want to apply a pauli-x to q4 if b0=0 and b1=1
not b0     
c-x b0,b1,q4
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2.6. Debugging and Monitoring Tools:
In order to visualise the evolution of the quantum state and the results of measurement, two 
monitoring directive can be inserted at any position of the circuit : “display” and “display_binary”.

A. Displaying the Quantum State

The directive “display” can be used to display both the quantum state and the binary register 
values. The quantum state is shown as a list of the non-null amplitudes of the different states 
composing the quantum state. 

The binary register shows either the outcome of measurement (if measurement has been 
performed) or a prediction of the measurement value. The prediction mechanism keeps track of the 
binary values starting from their initial values and updating these values each time a gate is applied 
or a measurement is performed. The shown values can be “0”, “1” or “X”. The value changes to “X” 
(unknown state) when there is a superposition of states, for example when a Hadamard gate is 
applied to a given qubit, it associated “bit” in the binary register turns to “X”. 

Example: in the following example we display the initial state then we apply a Pauli-X gate on q0, 
we display the result of bit-flip, then we a Hadamard gate on “q0”, then a CNOT on “q1” using “q0” 
as control qubit and finally we display the quantum state:

The result of the execution of the previous lines shows the following output which contains the 
result of the three “display” directives:

�6

qubits 2

h q0
cnot q0,q1
display

--------------[quantum state]-------------- 
   (+0.707107,+0.000000) |00> +
   (+0.707107,+0.000000) |11> +

---------------------------------------------------- 
 [>>] measurement prediction:   | X | X |
---------------------------------------------------- 
[>>] measurement register  :     | 0 | 0 |
----------------------------------------------------- 

  (0.707107 + i*0.000000) |00> +
  (0.000000 + i*0.000000) |01> +
  (0.000000 + i*0.000000) |10> +
  (0.707107 + i*0.000000) |11> +

q1

|010100010 … 001>

q0qn

q0

The measurement prediction can be 0, 1 or X. 
The simulator keeps track of the qubit state and 
can predict perfect measurement outcome. 
When a qubit is in superposition, the 
measurement outcome become unknown : X.

The measurement register contains the last 
measurement outcome (0 or 1).
Remark: updated only after measurement !
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B. Displaying only the Binary Register

When we use a lot of qubits (too verbose quantum state), or we want to display only the 
measurement results of some qubits such as ancillas, we can display only the binary register using 
the “display_binary” then only the binary register will be displayed. In the following example, we 
display the initial state then we flip the qubit 0 and we display only the binary register.

The execution of this circuit gives the following result:

2.7. Defining Sub-Circuits:
The quantum programmer can split his circuit into several parts which performs different tasks and 
gives different names to these sub-circuits. The names of the circuits being executed are then 
displayed one by one. For instance the quantum or the binary register can be printed at the end of 
each sub-circuit execution to visualize the intermediate states allowing the programmer to monitor 
the execution of his circuit step by step and debug it.

�7

qubits 2
display_binary
x q0
display_binary

--------------[quantum state]-------------- 
[>>] binary register:  | 0 | 0 |
--------------------------------------------------- 

--------------[quantum state]-------------- 
[>>] binary register:  | 0 | 1 |
--------------------------------------------------- 

  # define qubits 
  qubits 2
 
  .entangle
     h q0
     cnot q0,q1
     display

  .measurement
     measure q0
     measure q1
     display_binary

  1
  2
  3 
  4 
  5
  6
  7
  8 
  9
 10
 11
 12
 13

Define the number of qubits

This is a comment

Hadamard gate CNOT gate :
• control qubit : q0
• target qubit   : q1

Display the  current 
quantum state

Display only the 
measurement register

Measure qubit “q0”

Subcircuit Definition
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To do so, the programmer can use “labels” such as in the following EPR example: the first sub-
circuit is called “entangle” and is responsible of creating an EPR pair. The second sub-circuit is 
named “measurement” and contains a sequence of two qubits measurement then a display of the 
measurement outcome.

2.8. Quantum Gates Scheduling : Parallelism Specification
QX allows the user to schedule the execution of the quantum gates and to specify the parallelism 
in a quantum circuit. For instance, the programmer can specify whether set or gates are executed 
sequentially or simultaneously (in parallel). By default quantum gates are executed in sequence if 
no gate parallelism is specified.

Gate parallelism can be scpicified by putting the parallel quantum gates between brackets “{ }“ and 
separated by pipes “|” as in the following example which show a parallel version of the previous 
code:

In this example several gates sequence operating no different qubits such as the “prepz” 
sequence is parallelized and scheduled to be executed simultaneously. 

�8

# surface code 17 circuit
qubits 17

.surface_code_cycle
   # prepare ancillas in |0>
   prepz x44 
   prepz z10
   prepz  x2 
   prepz  z4 
   prepz  z12 
   prepz x14 
   prepz  z16 
   prepz  x22 

   # hadamard on x ancillas
   h x44 
   h x2
   h x14
   h x22 

   # 1st cnot dance
   cnot d1,z10 
   cnot x2,d3 
   cnot d5,z4 
   cnot d13,z12 
   cnot x14,d15 
   cnot x22,d23 
   …

Gate  
Sequence Time

# surface code 17 circuit
qubits 17

.surface_code_cycle

   # prepare ancillas in |0>
   { prepz x44 | prepz z10 |  prepz  x2  |  prepz  z4 |  prepz  z12  |  prepz x14  |  prepz  z16  |  prepz  x22 }

   # hadamard on x ancillas
   { h x44 |  h x2  |  h x14  |  h x22 }

   { cnot d1,z10 |  cnot x2,d3  | cnot d5,z4  |  cnot d13,z12 |  cnot x14,d15 |  cnot x22,d23 }

    …

Parallel Gates
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2.9. Iterative Execution : Loop Definition
The programmer can specify the number of iterations a sub-circuit should be executed by adding 
the number of iterations within parenthesis in front of the sub-circuit label as shown in the next 
figure. 

 
In this example the sub-circuit named “grover” named grover will be executed 2 times.

2.10. Error Model : Noise Simulation
By default the QX Simulator executes the circuits using perfect qubits and perfect gates, i.e. 
without any noise or decoherence. However real-word qubit implementations suffers from 
decoherence and circuits are realised using imperfect gates introducing “noisy” operations. Finally 
the qubits are not perfectly isolated and the surrounding environment, this imperfect isolation is an 
additional noise source which contribute to the introductions of errors into the circuits. 

The QX Simulator implements currently two error models: the symmetric depolarising channel and 
the pauli-twirling approximation (PTA) (work in progress). When specified by the user, the  QX 
Simulator  execute the circuit “under noise” using the specified error model with the user-defined 
configuration such the probability of errors.

A. The Depolarizing Channel Simulation

One of these error model is the “Depolarizing Channel”. Given a probability of single qubit error per 
“step” (we consider each gate of the circuit as a “step”),  this error model can inject errors into the 
circuit. These errors are injected in a form of bit-flips (x error), phase-flip (z error) or both in the 
same time (y error). The QX Simulator implements the so called “Symmetric Depolarizing 
Channel” which use equal probabilities for x,y and z errors. 

The error injection process is depicted in the following figure which illustrate how errors are 
injected in a perfect circuit to produce a noisy circuit.

�9

qubits 7

.init
   x q3
   h q0
   …

# iterating 2 times
.grover(2)

   # oracle_1
   x q1
   x q2
   toffoli q0,q1,q4
   toffoli q1,q4,q5
   toffoli q2,q5,q6
   cnot q6,q3
   …

   # inversion
   x q0
   x q1
   x q2 
   h q2   
   toffoli q0,q1,q2 
   h q2   
   …
 
.measure
   h q3
   measure q3
   display

Loop 2 Times
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In order to execute the circuit using the depolarizing channel the user has to add a single line in his 
circuit description:

This line tells the QX Simulator to use the depolarising channel to simulate the circuit execution 
under noise. The “0.001” is the probability (p) of a single physical qubit error, the higher this 
probability the more errors are injected into the circuit.

When running the circuit under noise, an error report is printed before the execution. The report 
indicates the number of errors injected in the circuit, their location and their type. For instance, if 
we add the later code at the end of a quantum code of the 3 qubit error correction circuit, and we 
run the simulator, we obtain the following output: 

�10

error_model  depolarizing_channel, 0.001

[+] loading circuit from ‘qec_3q_bitflip_code.qc’ ...
[-] loading quantum_code file ‘qec_3q_bitflip_code.qc'...
    * using the error model “depolarizing_channel” with error_probability=0.1
[+] code loaded successfully. 
[+] creating quantum register of 3 qubits... 
[+] generating noisy circuits...
[>] processing circuit 'init'...
    [e] depolarizing_channel : injecting errors in circuit 'init'...
    [+] circuit steps : 2
    [>>>] error injection step 0 : number of affected qubits: 1
      |--> error on qubit  1 (x error) 
    [+] total injected errors in circuit 'init': 1
[>] processing circuit 'encoding'...
    [e] depolarizing_channel : injecting errors in circuit 'encoding'...
    [+] circuit steps : 3
    [>>>] error injection step 0 : number of affected qubits: 1
      |--> error on qubit  1 (x error) 
    [>>>] error injection step 2 : number of affected qubits: 1
      |--> error on qubit  2 (y error) 
    [+] total injected errors in circuit 'encoding': 2

[+] executing circuit ‘init(noisy)’ ...
[>>] binary register:  | 0 | 1 | 1 |
------------------------------------------- 
[+] circuit execution time: 0.000147 sec.
[+] executing circuit ‘encoding(noisy)' ...
[>>] binary register:  | 1 | 1 | 1 |
------------------------------------------- 
[+] circuit execution time: 0.003223 sec.
…

|φ> 

|0>  

|0> 

H H |φ> 

|0>  

|0> 

H HE

E
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E

E
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Error  
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(1-p)px py pz
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B. The Operational Errors

…TO BE CONTINUED…

C. Quantum Decoherence

…TO BE CONTINUED…

NOTES

�11


